
© Copyright Ian D. Romanick 2008

6-May-2008

VGP353 – Week 6

⇨ Agenda:
­ Stencil-buffer refresher
­ Theory of shadow volumes

© Copyright Ian D. Romanick 2008

6-May-2008

Stencil Buffer

⇨ Extra per-pixel buffer containing integer values
­ Stencil test and stencil operation occur after per-

fragment operations and before depth testing

Fragment
shader

Stencil Test

Stencil ref. value

Stencil mask

Stencil OpPass

Fail

Depth Test

Current stencil value

Pass

Fail

Stencil write mask

© Copyright Ian D. Romanick 2008

6-May-2008

Stencil Buffer

⇨ Stencil function is one GL's usual comparators
­ GL_NEVER, GL_LESS, GL_EQUAL, GL_LEQUAL,

GL_GREATER, GL_NOTEQUAL, GL_GEQUAL,
GL_ALWAYS

­ Performs bit-wise operations of (stencil & mask)
func (ref & mask)

© Copyright Ian D. Romanick 2008

6-May-2008

Stencil Buffer

glStencilFuncSeparate(
GLenum face,
GLenum func,
GLint ref,
GLuint mask);

© Copyright Ian D. Romanick 2008

6-May-2008

Stencil Buffer

glStencilFuncSeparate(
GLenum face,
GLenum func,
GLint ref,
GLuint mask);

Polygon facing selector:
different operations for front
and back facing polygons

© Copyright Ian D. Romanick 2008

6-May-2008

Stencil Buffer

glStencilFuncSeparate(
GLenum face,
GLenum func,
GLint ref,
GLuint mask);

Comparison function

Polygon facing selector:
different operations for front
and back facing polygons

© Copyright Ian D. Romanick 2008

6-May-2008

Stencil Buffer

glStencilFuncSeparate(
GLenum face,
GLenum func,
GLint ref,
GLuint mask);

Comparison function

Reference value used in
comparison

Polygon facing selector:
different operations for front
and back facing polygons

© Copyright Ian D. Romanick 2008

6-May-2008

Stencil Buffer

glStencilFuncSeparate(
GLenum face,
GLenum func,
GLint ref,
GLuint mask);

Comparison function

Reference value used in
comparison

Bit-wise mask used on
values before comparison

Polygon facing selector:
different operations for front
and back facing polygons

© Copyright Ian D. Romanick 2008

6-May-2008

Stencil Buffer

glStencilFuncSeparate(
GLenum face,
GLenum func,
GLint ref,
GLuint mask);

Comparison function

Reference value used in
comparison

Bit-wise mask used on
values before comparison

Polygon facing selector:
different operations for front
and back facing polygons

⇨ Passing GL_FRONT_AND_BACK for face acts
like GL 1.x glStencilFunc function

­ Radeon r300 (e.g., Radeon 9800) needs front and
back ref and mask to be the same

© Copyright Ian D. Romanick 2008

6-May-2008

Stencil Buffer

⇨ Stencil operation modifies value in stencil buffer
­ Stencil buffer may be modified even if stencil and

depth tests fail!
­ Operation is one of GL_KEEP, GL_ZERO,

GL_REPLACE, GL_INCR, GL_DECR, GL_INVERT,
GL_INCR_WRAP, and GL_DECR_WRAP

­ GL_INCR and GL_DECR saturate to maximum value or zero
­ GL_REPLACE stores reference value

© Copyright Ian D. Romanick 2008

6-May-2008

Stencil Buffer

glStencilOpSeparate(
GLenum face,
GLenum sfail,
GLenum dfail,
GLenum dpass);

© Copyright Ian D. Romanick 2008

6-May-2008

Stencil Buffer

glStencilOpSeparate(
GLenum face,
GLenum sfail,
GLenum dfail,
GLenum dpass);

Polygon facing selector:
different operations for front
and back facing polygons

© Copyright Ian D. Romanick 2008

6-May-2008

Stencil Buffer

glStencilOpSeparate(
GLenum face,
GLenum sfail,
GLenum dfail,
GLenum dpass);

Operation when stencil test
fails

Polygon facing selector:
different operations for front
and back facing polygons

© Copyright Ian D. Romanick 2008

6-May-2008

Stencil Buffer

glStencilOpSeparate(
GLenum face,
GLenum sfail,
GLenum dfail,
GLenum dpass);

Operation when stencil test
fails
Operation when stencil test
passes but depth test fails

Polygon facing selector:
different operations for front
and back facing polygons

© Copyright Ian D. Romanick 2008

6-May-2008

Stencil Buffer

glStencilOpSeparate(
GLenum face,
GLenum sfail,
GLenum dfail,
GLenum dpass);

Operation when stencil test
fails
Operation when stencil test
passes but depth test fails

Operation when stencil and
depth tests pass

Polygon facing selector:
different operations for front
and back facing polygons

© Copyright Ian D. Romanick 2008

6-May-2008

Stencil Buffer

glStencilOpSeparate(
GLenum face,
GLenum sfail,
GLenum dfail,
GLenum dpass);

Operation when stencil test
fails
Operation when stencil test
passes but depth test fails

Operation when stencil and
depth tests pass

Polygon facing selector:
different operations for front
and back facing polygons

⇨ Passing GL_FRONT_AND_BACK for face acts
like GL 1.x glStencilOp function

© Copyright Ian D. Romanick 2008

6-May-2008

Stencil Buffer

⇨ Stencil buffer can also be cleared
­ glClearStencil sets the cleared value
­ Pass GL_STENCIL_BUFFER_BIT to glClear
­ If depth and stencil are used, always clear both

together

⇨ Writing of particular bits can be controlled with
glStencilMaskSeparate

­ Passing GL_FRONT_AND_BACK for face parameter
acts like GL 1.x glStencilMask function

­ Radeon r300 (e.g., Radeon 9800) needs front and
back mask to be the same

© Copyright Ian D. Romanick 2008

6-May-2008

Stencil Buffer – Example

glClearStencil(0);
glClear(GL_STENCIL_BUFFER_BIT);
glEnable(GL_STENCIL_TEST);

/* Write 1 to stencil where polygon is drawn.
 */
glStencilFunc(GL_ALWAYS, 1, ~0);
glStencilOp(GL_KEEP, GL_KEEP, GL_REPLACE);
draw_some_polygon();

/* Draw scene only where stencil buffer is 1.
 */
glStencilFunc(GL_EQUAL, 1, ~0);
glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);
draw_scene();

© Copyright Ian D. Romanick 2008

6-May-2008

Stencil Buffer – Window System

⇨ Stencil buffer is often stored interleaved with
depth buffer

­ 8-bit stencil with 24-bit depth is most common
­ Other combinations such as 1-bit stencil with 15-bit

depth do exist (very, very rare these days)

⇨ Must request a stencil buffer with your window
­ With SDL, this means setting the stencil size attribute

to the minimum number of stencil bits required
SDL_GL_SetAttribute(SDL_GL_STENCIL_SIZE, 4);

© Copyright Ian D. Romanick 2008

6-May-2008

Stencil Buffer – FBOs

⇨ Stencil buffers can also be used with framebuffer
objects

­ Create with glRenderbufferStorageEXT and an
internal type of GL_STENCIL_INDEX_EXT

­ Sized types are also available
­ There are no stencil textures

­ Attach to GL_STENCIL_ATTACHMENT_EXT

© Copyright Ian D. Romanick 2008

6-May-2008

Stencil Buffer – FBOs

⇨ If depth and stencil are required, use the
GL_EXT_packed_depth_stencil extension

­ Create renderbuffer or texture with internal type of
GL_DEPTH_STENCIL_EXT

­ One sized type of GL_DEPTH24_STENCIL8_EXT also
available

­ type parameter must be GL_UNSIGNED_INT_24_8_EXT
­ Treated as a depth texture for texturing

­ Bind same object to both the depth and stencil
attachments

© Copyright Ian D. Romanick 2008

6-May-2008

Stencil Buffer – FBO Example

glGenFramebuffersEXT(1, &fb);
glGenTextures(2, tex_names);

// Setup color texture (mipmap)
glBindTexture(GL_TEXTURE_2D, tex_names[0]);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB8, 512, 512, 0, GL_RGBA, GL_INT, NULL);
glGenerateMipmapEXT(GL_TEXTURE_2D);

// Setup depth_stencil texture (not mipmap)
glBindTexture(GL_TEXTURE_2D, tex_names[1]);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH24_STENCIL8_EXT, 512, 512, 0,
 GL_DEPTH_STENCIL_EXT, GL_UNSIGNED_INT_24_8_EXT, NULL);

glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, fb);
glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT,
 GL_TEXTURE_2D, tex_names[0], 0);
glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_DEPTH_ATTACHMENT_EXT,
 GL_TEXTURE_2D, tex_names[1], 0);
glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_STENCIL_ATTACHMENT_EXT,
 GL_TEXTURE_2D, tex_names[1], 0);

© Copyright Ian D. Romanick 2008

6-May-2008

Stencil Buffer – FBO Example

glGenFramebuffersEXT(1, &fb);
glGenTextures(2, tex_names);

// Setup color texture (mipmap)
glBindTexture(GL_TEXTURE_2D, tex_names[0]);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB8, 512, 512, 0, GL_RGBA, GL_INT, NULL);
glGenerateMipmapEXT(GL_TEXTURE_2D);

// Setup depth_stencil texture (not mipmap)
glBindTexture(GL_TEXTURE_2D, tex_names[1]);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH24_STENCIL8_EXT, 512, 512, 0,
 GL_DEPTH_STENCIL_EXT, GL_UNSIGNED_INT_24_8_EXT, NULL);

glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, fb);
glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT,
 GL_TEXTURE_2D, tex_names[0], 0);
glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_DEPTH_ATTACHMENT_EXT,
 GL_TEXTURE_2D, tex_names[1], 0);
glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_STENCIL_ATTACHMENT_EXT,
 GL_TEXTURE_2D, tex_names[1], 0);

Same object attached both places

© Copyright Ian D. Romanick 2008

6-May-2008

Break

© Copyright Ian D. Romanick 2008

6-May-2008

Shadow Volumes

⇨ Proposed by Frank Crow in 1977
­ Add new geometry to the scene that describes the

volume occluded from the light source
­ Objects within the volume are in shadow, objects not

within the volume are not
­ Sometimes called Crow shadows or Crow shadow

volumes

© Copyright Ian D. Romanick 2008

6-May-2008

Shadow Volumes

⇨ Proposed by Frank Crow in 1977
­ Add new geometry to the scene that describes the

volume occluded from the light source
­ Objects within the volume are in shadow, objects not

within the volume are not
­ Sometimes called Crow shadows or Crow shadow

volumes

⇨ In 1991, Tim Heidmann showed how the stencil
buffer can be used to apply these volumes to a
scene

­ This adaptation often called stencil volume shadows

© Copyright Ian D. Romanick 2008

6-May-2008

Shadow Volumes

⇨ Basic algorithm:
1. Render scene using only ambient light

2. For each light in the scene:
a. Using the depth information from the initial pass, construct

a stencil with “holes” where there the light is not occluded.
­ Stencil will be 0 where the light is visible

b. Render scene again with normal lighting. Use the stencil
mask to only draw where the light is not occluded.

­ Configure stencil test to draw only where stencil = 0

­ Two common methods to create this stencil: z-pass
and z-fail

© Copyright Ian D. Romanick 2008

6-May-2008

Shadow Volumes

⇨ Problems?

© Copyright Ian D. Romanick 2008

6-May-2008

Shadow Volumes

⇨ Problems?
­ Very fill-rate intensive
­ Calculating shadow volumes can be complex and

time consuming
­ Difficult to extend to soft-shadows

© Copyright Ian D. Romanick 2008

6-May-2008

Shadow Volumes

⇨ Problems?
­ Very fill-rate intensive
­ Calculating shadow volumes can be complex and

time consuming
­ Difficult to extend to soft-shadows

⇨ Advantages?

© Copyright Ian D. Romanick 2008

6-May-2008

Shadow Volumes

⇨ Problems?
­ Very fill-rate intensive
­ Calculating shadow volumes can be complex and

time consuming
­ Difficult to extend to soft-shadows

⇨ Advantages?
­ Since everything is done in geometry-space instead of

image-space, no aliasing artifacts!!!
­ No shadow acne either!

© Copyright Ian D. Romanick 2008

6-May-2008

Shadow Volumes – Z-Pass

1. Disable depth and color writes

2. Configure stencil operation:
­ GL_INCR_WRAP on depth pass front-faces
­ GL_DECR_WRAP on depth pass back-faces
­ GL_KEEP for all other cases

3. Draw shadow volumes
⇨ Why use GL_INCR_WRAP and GL_DECR_WRAP

instead of GL_INCR and GL_DECR?

© Copyright Ian D. Romanick 2008

6-May-2008

Shadow Volumes – Z-Pass

1. Disable depth and color writes

2. Configure stencil operation:
­ GL_INCR_WRAP on depth pass front-faces
­ GL_DECR_WRAP on depth pass back-faces
­ GL_KEEP for all other cases

3. Draw shadow volumes
⇨ Why use GL_INCR_WRAP and GL_DECR_WRAP

instead of GL_INCR and GL_DECR?
­ Otherwise, if there are more than 2n increments before

a decrement, the count will be wrong

© Copyright Ian D. Romanick 2008

6-May-2008

Shadow Volumes – Z-Pass

-1

+1

Camera

Light+1

+1

-1

-1

© Copyright Ian D. Romanick 2008

6-May-2008

Shadow Volumes – Z-Pass

⇨ Big problem with z-pass: What if the camera is
inside a shadow volume?

© Copyright Ian D. Romanick 2008

6-May-2008

Shadow Volumes – Z-Pass

-1

+1

Camera

Light+1

+1

-1

-1

© Copyright Ian D. Romanick 2008

6-May-2008

Shadow Volumes – Z-Pass

⇨ Big problem with z-pass: What if the camera is
inside a shadow volume?

­ The count is too low!

© Copyright Ian D. Romanick 2008

6-May-2008

Shadow Volumes – Z-Pass

⇨ Big problem with z-pass: What if the camera is
inside a shadow volume?

­ The count is too low!

⇨ Possible solutions:
­ Clear stencil buffer to +1 for each volume the camera

is inside
­ Expensive to compute

­ Add a “cap” at the near plane for each volume the
camera is inside

­ Expensive to compute

­ Use z-fail

© Copyright Ian D. Romanick 2008

6-May-2008

Shadow Volumes – Z-Fail

1. Disable depth and color writes

2. Configure stencil operation:
­ GL_INCR_WRAP on depth fail back-faces
­ GL_DECR_WRAP on depth fail front-faces
­ GL_KEEP for all other cases

3. Draw shadow volumes
⇨Method first publicly described by John Carmack

while working on Doom 3
­ Often called Camack's reverse

© Copyright Ian D. Romanick 2008

6-May-2008

Shadow Volumes – Z-Fail

1. Disable depth and color writes

2. Configure stencil operation:
­ GL_INCR_WRAP on depth fail back-faces
­ GL_DECR_WRAP on depth fail front-faces
­ GL_KEEP for all other cases

3. Draw shadow volumes

Note that the depth test and the
polygon facing are reversed
compared to z-pass

© Copyright Ian D. Romanick 2008

6-May-2008

Shadow Volumes – Z-Fail

⇨ Big problems with z-fail:
­ Since more geometry fails the depth test than passes,

this method can use orders of magnitude more fill rate
­ US Patent #6,384,822

© Copyright Ian D. Romanick 2008

6-May-2008

Shadow Volumes

⇨ Shadow volume geometry is made of 3 types of
polygons:

­ Front faces of the object (w.r.t. the light)
­ Quads from each silhouette edge (w.r.t. the light)

projected to “infinity”
­ Back faces of the object (w.r.t. the light) projected to

“infinity”

© Copyright Ian D. Romanick 2008

6-May-2008

Shadow Volumes

⇨ Front and back caps are trivial. What about the
sides?

­ Add a degenerate quad at each edge of the model
­ Quad stores normals of one polygon with one vertex

pair and normals of the other polygon with the other
vertex pair

­ In vertex shader, test vertex normal against light. If
normal points away from light, project to infinity

­ For silhouette edges one pair will be projected away and the
other pair will not

© Copyright Ian D. Romanick 2008

6-May-2008

Shadow Volumes

n
0

n
1

v
0

v
1

v0 n0
v1 n0
v1 n1
v0 n1

Vertex data for shadow
volume quad:

© Copyright Ian D. Romanick 2008

6-May-2008

Shadow Volumes

⇨ Advantages?
­ Shadow volume geometry is independent of light

position and object orientation
­ Very little work done on the CPU per-frame
­ Static shadow volume data does not need to be re-

uploaded to GPU every frame

⇨ Disadvantages?
­ For static lights and geometry a lot of redundant work

is done every frame
­ True shadow volumes only exist on the GPU, so we

can't determine whether the camera is inside a
shadow volume

© Copyright Ian D. Romanick 2008

6-May-2008

References

http://en.wikipedia.org/wiki/Shadow_volume

http://en.wikipedia.org/wiki/Shadow_volume

© Copyright Ian D. Romanick 2008

6-May-2008

Next week...

⇨ More shadow volumes
­ Creating the evil “fins” Muahahaha!
­ Quiz #3

­ Week 5 material (PSSMs)
­ Week 6 material (shadow volume theory)

© Copyright Ian D. Romanick 2008

6-May-2008

Legal Statement

This work represents the view of the authors and does not necessarily rep-
resent the view of IBM or the Art Institute of Portland.

OpenGL is a trademark of Silicon Graphics, Inc. in the United States, other
countries, or both.

Khronos and OpenGL ES are trademarks of the Khronos Group.

Other company, product, and service names may be trademarks or service
marks of others.

